This composite image shows Jupiter and its aurorae during a solar coronal mass ejections’s arrival at Jupiter on 2 October 2011. In the image, X-ray data from Chandra (purple) have been overlaid on an optical image from the NASA/ESA Hubble Space Telescope. Image credit: X-ray: NASA/CXC/UCL/W.Dunn et al, Optical: NASA/STScI.Solar storms are triggering X-ray aurorae on Jupiter that are about eight times brighter than normal over a large area of the planet and hundreds of times more energetic than Earth’s “northern lights,” according to a new study using data from NASA’s Chandra X-ray Observatory. This result is the first time that Jupiter’s aurorae have been studied in X-ray light when a giant solar storm arrived at the planet.
The Sun constantly ejects streams of particles into space in the solar wind. Sometimes, giant storms, known as coronal mass ejections (CMEs), erupt and the winds become much stronger. These events compress Jupiter’s magnetosphere, the region of space controlled by Jupiter’s magnetic field, shifting its boundary with the solar wind inward by more than a million miles. This new study found that the interaction at the boundary triggers the X-rays in Jupiter’s aurorae, which cover an area bigger than the surface of the Earth.This composite image shows Jupiter and its aurorae on 4 October 2011, two days after a solar coronal mass ejection had subsided. In the image, X-ray data from Chandra (purple) have been overlaid on an optical image from the NASA/ESA Hubble Space Telescope. Image credit: X-ray: NASA/CXC/UCL/W.Dunn et al, Optical: NASA/STScI.The composite images above show Jupiter and its aurora during and after a CME’s arrival at Jupiter in October 2011. The impact of the CME on Jupiter’s aurora was tracked by monitoring the X-rays emitted during two 11-hour observations. The scientists used that data to pinpoint the source of the X-ray activity and identify areas to investigate further at different time points. They plan to find out how the X-rays form by collecting data on Jupiter’s magnetic field, magnetosphere and aurora using Chandra and ESA’s XMM-Newton.
NASA’s Juno spacecraft is barreling toward a rendezvous with Jupiter after a 2.8 billion kilometre (1.7-billion-mile), five-year trip from planet Earth. The research probe’s main engine will ignite for 35 minutes to maneuver Juno into orbit, and engineers expect to receive confirmation of burn’s start at 0318 GMT Tuesday.
Scientists have published a catalog of exoplanet discoveries made by NASA’s Kepler space telescope, identifying 219 previously-unknown planet candidates circling stars elsewhere in the galaxy, including 10 would-be worlds that appear to be about the same size of Earth with temperatures potentially hospitable for life.
Whether you’re a casual stargazer or armed with a toolkit of observing gadgets, chances are you have caught a glimpse of Jupiter this year beckoning as one of the brightest objects in the night sky. It’s about to get its first visitor in nearly a decade, when NASA’s Juno spacecraft rockets into orbit.