NGC 247 is a spiral galaxy in the Sculptor Group some 11 million light-years from Earth. This Hubble image shows a zoomed-in view of NGC 247’s central region. Click the picture for a larger-scale version that reveals more distant galaxies. Image credit: ESA/Hubble & NASA.This NASA/ESA Hubble Space Telescope image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy).
NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas.
This galaxy displays one particularly unusual and mysterious feature — it is not visible in the image above, but can be seen clearly in wider views of the galaxy, such as the picture below from ESO’s MPG/ESO 2.2-metre telescope. The northern part of NGC 247’s disc (to the right in the following image) hosts an apparent void, a gap in the usual swarm of stars and H II regions that spans almost a third of the galaxy’s total length.This picture of the spiral galaxy NGC 247 was taken using the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. Image credit: ESO.There are stars within this void, but they are quite different from those around it. They are significantly older, and as a result much fainter and redder. This indicates that the star formation taking place across most of the galaxy’s disc has somehow been arrested in the void region, and has not taken place for around one billion years. Although astronomers are still unsure how the void formed, recent studies suggest it might have been caused by gravitational interactions with part of another galaxy.
This Hubble Space Telescope image shows globular cluster NGC 1783 in the Southern Hemisphere constellation of Dorado. NGC 1783 lies within the Large Magellanic Cloud, a satellite galaxy of our Milky Way, some 160,000 light-years from Earth. NGC 1783 is thought to be less than 1.5 billion years old — very young for a globular cluster.
Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from three of NASA’s space telescopes, Italian researchers have found the best evidence to date that the direct collapse of a gas cloud produced supermassive black holes in the early universe.
Peering deep into the early universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colourful galaxies swimming in the inky blackness of space in the constellation Sculptor. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box.