This is a zoomed-in section of the 46 billion-pixel Milky Way picture depicting the Eta Carinae Nebula. An online tool provided by astronomers at the Ruhr-Universität Bochum (RUB) permits users to navigate the huge image by named object or celestial coordinates, zoom in or out, or apply specific filters. Image credit: Lehrstuhl für Astrophysik, RUB. AN screen capture by Ade Ashford.For five years, the astronomers at the Ruhr-Universität Bochum (RUB) have been monitoring our galaxy in the search of objects with variable brightness. Those objects may, for example, include stars in front of which a planet is passing, or multiple systems where stars orbit each other and which obscure each other every now and then. In his PhD thesis, Moritz Hackstein is compiling a catalogue of such variable objects of medium brightness. For this purpose, the team from the Faculty of Physics and Astronomy takes pictures of the southern sky night after night. To this end, they use the telescopes at Bochum’s university observatory in the Atacama Desert in Chile. More than 50,000 new variable objects, which had hitherto not been recorded in databanks, have been discovered by the researchers so far.
268 Individual Images Make Up the Photo of the Milky Way
The area that the astronomers observe is so large that they have to subdivide it into 268 sections. They photograph each section in intervals of several days. By comparing the images, they are able to identify the variable objects. The team has assembled the individual images of the 268 sections into one comprehensive image. Following a calculation period of several weeks, they created a 194 Gigabyte file, into which images taken with different filters have been entered.
Online Tool Facilitates Search for Individual Celestial Objects
Using the online tool, any interested person can view the complete ribbon of the Milky Way at a glance, or zoom in and inspect specific areas. An input window, which provides the position of the displayed image section, can be used to search for specific objects. If the user types in “Eta Carinae,” for example, the tool moves to the respective star; the search term “M8” leads to the Lagoon Nebula.
Every few thousand years, an unlucky star wanders too close to the black hole at the center of the Milky Way. The black hole’s powerful gravity rips the star apart, sending a long streamer of gas whipping outward. That would seem to be the end of the story, but it’s not. New research shows that not only can the gas gather itself into planet-size objects, but those objects then are flung throughout the galaxy in a game of cosmic “spitball.”
Using the advanced adaptive optics system GeMS, on the Gemini South telescope, astronomers have imaged a beautiful stellar jewel-box — a tightly packed cluster of stars that is one of the few places in our galaxy where astronomers think stars can actually collide.
Now that scientists have confirmed the existence of gravitational waves, a NASA team using a balloon-borne observatory is set to search for a predicted signature of primordial gravitational waves that would prove the infant universe expanded far faster than the speed of light and began growing exponentially almost instantaneously after the Big Bang.