NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers — it contains five times more nitrogen than our Sun as well as high concentrations of other elements. Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak.This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula.
NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers.
Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than our Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements.
University of Texas astronomer Natalie Gosnell has used the Hubble Space Telescope to better understand why some stars aren’t evolving as predicted. These so-called “blue stragglers” look hotter and bluer than they should for their advanced age. It’s almost as it they were somehow reinvigorated to look much younger than they really are.
Taking a second look with a more powerful camera, Hubble reveals thousands of emission nebulae in an oddball irregular dwarf galaxy 17 million light years from Earth
A research team has used the NASA/ESA Hubble Space Telescope’s Cosmic Origins Spectrograph to study a body known as BD+44°493, the brightest known second-generation star in the sky. BD+44°493 is thought to have been enriched by elements from one of the first generation of stars and the researchers detected several elements that had never been seen before in such a star.