Subscribe to Astronomy Now
Astronomy Now Home
Home Magazine Sky Chart Resources Store

On Sale Now!

The August 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). The Astronomy Now iPad/iPhone editions are now available worldwide on the App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

Milky Way's supermassive black hole snacks on hot gas
Posted: 8 May 2013

ESA's Herschel space observatory has made detailed observations of surprisingly hot molecular gas that may be orbiting or falling towards the supermassive black hole lurking at the centre of our Milky Way galaxy.

The environment at the centre of our Milky Way Galaxy. The Galactic Centre hosts a supermassive black hole in the region known as Sagittarius A*, or Sgr A*, with a mass of about four million times that of our Sun. Credit: ESA–C. Carreau
Our local black hole is located in a region known as Sagittarius A* - Sgr A* - after a nearby radio source. It has a mass about four million times that of our Sun and lies around 26 000 light-years away from the Solar System.

Even at that distance, it is a few hundred times closer to us than any other galaxy with an active black hole at its centre, making it the ideal natural laboratory to study the environment around these enigmatic objects.

Vast amounts of dust lie in the plane of the Milky Way between here and its centre, obscuring our view at visible wavelengths. But at far-infrared wavelengths, it is possible to peer through the dust, affording Herschel's scientists the chance to study the turbulent innermost region of our Galaxy in great detail.

Herschel has detected a great variety of simple molecules at the Milky Way's heart, including carbon monoxide, water vapour and hydrogen cyanide. By analysing the signature from these molecules, astronomers have been able to probe some of the fundamental properties of the interstellar gas surrounding the black hole.

"Herschel has resolved the far-infrared emission within just 1 light-year of the black hole, making it possible for the first time at these wavelengths to separate emission due to the central cavity from that of the surrounding dense molecular disc," says Javier Goicoechea of the Centro de Astrobiologia, Spain, and lead author of the paper reporting the results.

The biggest surprise was quite how hot the molecular gas in the innermost central region of the Galaxy gets. At least some of it is around 1000 degrees C, much hotter than typical interstellar clouds, which are usually only a few tens of degrees above the –273 degrees C of absolute zero.

While some of the heating is down to the fierce ultraviolet radiation pouring from a cluster of massive stars that live very close to the Galactic Centre, they are not enough to explain the high temperatures alone.

In addition to the stellar radiation, Dr Goicoechea's team hypothesise that emission from strong shocks in highly-magnetised gas in the region may be a significant contributor to the high temperatures. Such shocks can be generated in collisions between gas clouds, or in material flowing at high speed from stars and protostars.

"The observations are also consistent with streamers of hot gas speeding towards Sgr A*, falling towards the very centre of the Galaxy," says Dr Goicoechea. "Our Galaxy's black hole may be cooking its dinner right in front of Herschel's eyes."

Just before material falls into a black hole, it is heated up enormously and can cause high-energy X-ray and gamma-ray flares. While Sgr A* currently shows little sign of such activity, this could change soon.

Using near-infrared observations, other astronomers have spotted a separate, compact cloud of gas amounting to just a few Earth masses spiralling towards the black hole. Located much closer to the black hole than the reservoir of material studied by Herschel in this work, it may finally be gobbled up later this year.

Spacecraft including ESA's XMM-Newton and Integral will be waiting to spot any high-energy burps as the black hole enjoys its feast.

"The centre of the Milky Way is a complex region, but with these Herschel observations, we have taken an important step forward in our understanding of the vicinity of a supermassive black hole, which will ultimately help improve our picture of galaxy evolution," says Göran Pilbratt, ESA's Herschel project scientist.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.