Astronomy Now Home
Home Magazine Resources Store

On Sale Now!

The October 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). Astronomy Now is the only astronomy magazine specially designed to be read on tablets and phones. Download the app from Google Play Store or the Apple App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

Planet from another galaxy discovered
Posted: 19 November 2010

Bookmark and Share

A team of astronomers using ESO's 2.2 metre telescope at the La Silla Observatory in Chile have detected a hot-jupiter planet like no other, orbiting a star of extragalactic origin that now finds itself in our own Milky Way.

The 1.3 Jupiter mass planet orbits its star, HIP 13044, at a distance of just 0.12 astronomical units (1 AU is equal to the separation of the Sun and the Earth). Residing 2,200 light years away in the constellation of Fornax, the system is part of the Helmi Stream, the remains of an ancient galactic merger between a dwarf galaxy and the Milky Way billions of years ago. Furthermore, the star has already passed through the red giant phase of stellar evolution to burn helium in its core as a 'horizontal branch' star, providing insight into planetary evolution around a dying star.

Artist impression of HIP 13044b orbiting its bloated host star. Image: ESO/L. Calçada.

"HIP 13044 is in a unique evolutionary state not yet studied in exoplanet surveys," Rainer Klement of the Max Planck Institute of Astronomy (MPIA) told participants of a press conference where the results were announced yesterday. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies, but this cosmic merger has brought an extragalactic planet within our reach."

The merger would not have disrupted the planet from around its star, explained Klement, because planetary orbits are only disturbed by encounters with another star on a similar small scale – on a galactic scale the stars are spaced with enough distance for the forces of a galactic merger to be negligible on the planet-star system.

The planet was detected via the radial velocity method – using the high-resolution spectrograph FEROS (Fibre-fed Extended Range Optical Spectrograph) attached to the 2.2-metre telescope at ESO’s La Silla Observatory in Chile – by looking for tiny wobbles in the star's orbit as the planet makes it presence known by invoking a small gravitational tug. A clear signal was seen in the data, indicating a planet with at least 1.3 times the mass of Jupiter orbiting its host star once every 16.2 days. The observations are also backed up by independent groups such as the SuperWASP team.

HIP 13044 is the lowest metallicity star known to host an exoplanet. Graphic presented in press conference.

The scientists estimate that HIP 13044 was around the same size of our Sun before it evolved into a red giant, and so will provide a natural laboratory for studying how our planetary system might evolve when the Sun exhausts its fuel supply in about five billion years time. "If a star has a mass of more than 3-5 solar masses, there would be no chance for the outer Solar System planets to survive," says Johny Setiawan, also from MPIA. "But HIP 13044 is a bit less than one solar mass, so the influence of the star is not powerful enough to destroy the outer planets, although it could have already swallowed some inner planets."

But HIP 13044b isn't out of the water yet, so to speak, for its star will swell again in the next stage of its evolution to consume its remaining planet, likely foretelling a similar fate for Jupiter and Saturn in our own Solar System.

The star also throws into questions theories of planetary formation. Most stars hosting planets are metal rich, whereas HIP 13044 contains very few elements heavier than hydrogen and helium – it is the lowest metallicity star known to host planets, no less. “It is a puzzle for the widely accepted model of planet formation to explain how such a star, which contains hardly any heavy elements at all, could have formed a planet,” says Setiawan. “Planets around stars like this must probably form in a different way.”

Klement adds that there would be no chance to find rocky exoplanets like the Earth, Venus or Mars, around a low metal star since metals are needed for the core accretion model to work.

Although tentative claims have been made for the detection of extragalactic exoplanets via gravitational microlensing, in which the planet passing in front of an even more distant star leads to a subtle flash, this method relies on a single event and the chance alignment of a distant star, planetary system and observer here on Earth, and so remains impossible to confirm.

The results of Setiawan and colleagues' study are presented in the current issue of Science Express.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.