Astronomy Now Home
Home Magazine Resources Store

On Sale Now!

The October 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). Astronomy Now is the only astronomy magazine specially designed to be read on tablets and phones. Download the app from Google Play Store or the Apple App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

3D simulations show asymmetric supernovae
Posted: 17 September 2010

Bookmark and Share

New 3D simulations of supernova explosions take astronomers a step closer to understanding the most powerful events in the Universe.

Supernova explosions are the cataclysmic end point of stars. As the star exhausts its supply of hydrogen and helium fuel it begins to fuse progressively heavier elements in its core, becoming denser and denser until it begins to implode. At a critical point, a shockwave of energy is released and the star explodes out into space.

The new 3D simulations are based on the collapse of an asymmetric and unstable star.

Supernovae explosions and their remnants have been observed for thousands of years, but the step-by-step process by which this occurs is poorly understood, largely because it is impossible to observe what is going on inside the central core of the star. Scientists strive to understand how the star becomes instantly unstable. “We don’t know what the mechanism of explosion is,” says Burrows. “As a theorist who wants to get to root causes, this is a natural problem to explore.”

New computer simulations created led by Burrows at Princeton University may provide new insight into this process. The simulations are based on the idea that the collapsing star is not sphere-like, like many models assume, but distinctly asymmetric and influenced by instabilities in the volatile mix surrounding its core.

“I think this is a big jump in our understanding of how these things can explode,” he says. “In principle, if you could go inside the supernovae to their centres, this is what you might see.”

Click here for movie of the asymmetric supernova explosion created by Adam Burrows and colleagues.

To visualize the explosion, the team combined expertise from astrophysics, applied mathematics and computer science. They assigned values for the energetic behaviour of stars based on equations used by geophysicists for climate modeling and weather forecasting, and also took into account factors that change with time, such as fluid density, temperature, pressure, gravitational acceleration and velocity.

“It may well prove to be the case that the fundamental impediment to progress in supernova theory over the last few decades has not been lack of physical detail, but lack of access to codes and computers with which to properly simulate the collapse phenomenon in 3-D,” conclude the team. “This could explain the agonizingly slow march since the 1960s toward demonstrating a robust mechanism of explosion.”

The next step is to connect the simulations to real observations. “Visualization is crucial,” adds Burrows. “Otherwise, all you have is merely a jumble of numbers. Visualization via stills and movies conjures the entire phenomenon and brings home what has happened. It also allows one to diagnose the dynamics, so that the event is not only visualized, but understood.”

The simulations are described in detail in the 1 September issue of the Astrophysical Journal.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.