Astronomy Now Home
Home Magazine Resources Store

On Sale Now!

The October 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). Astronomy Now is the only astronomy magazine specially designed to be read on tablets and phones. Download the app from Google Play Store or the Apple App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

Something strange is happening on Titan
Posted: 10 June 2010

Bookmark and Share

New findings on Saturn’s hydrocarbon-shrouded moon Titan reveal anomalies that although are likely explained by chemical processes, still leave the room open for the possibility of life.

Titan, with fellow moon Tethys in the background. Image: NASA/JPL/SSI.

If correct then the two findings – a depletion of hydrogen and the apparent absence of acetylene at the surface– point to some surprising activity on Titan, which is the ringed planet’s largest moon and is covered in lakes of liquid methane. Molecular hydrogen is the third most common molecular species in Titan’s atmosphere, and in 1980 and 1981 the Voyager spacecraft measured its molar fraction to be 0.001 in the lower atmosphere (a mole is the mass of a substance with the same number of particles as 12 grams of carbon-12, and the molar fraction is the ratio of the number of moles of one substance compared to other substances). However, measurements of the upper atmosphere by NASA’s Cassini spacecraft find a molar fraction of 0.004. The fact that the molar fraction is four times higher in the upper atmosphere, 1,000 kilometre high, is odd because hydrogen is the lightest of all elements and therefore easily escapes into space.

To attempt to solve this puzzle, Professor Darrell Strobel of Johns Hopkins University modelled the flow of hydrogen in Titan’s atmosphere as a computer simulation, which showed that the downward flow of hydrogen from the upper atmosphere to the surface should be 10,000 trillion trillion molecules per second. The lower atmosphere should therefore have much more molecular hydrogen, and Strobel’s computer models, the results of which are published in the journal Icarus, beg the question ‘where does it all go?’

There are two possibilities. Because Titan’s hydrogen comes from molecules of methane being split into carbon and hydrogen atoms by ultraviolet light from the Sun, it is possible that they could then recombine at the surface. However, at temperatures of –179 degrees Celsius, any chemical reactions would proceed very slowly and, with a lifetime of 80,000 years in the atmosphere, the hydrogen should build-up to high levels unless there was a catalyst to speed this reaction along.

“The best guess for a chemical process would be some metal, such as iron particles in a mineral, acting as a catalyst,” Strobel tells Astronomy Now. The discovery of a catalysing mineral on Titan would be a surprising find, but not nearly as revelatory as the second possibility for explaining the hydrogen depletion.

In 2005, Heather Smith and Chris Mckay of NASA Ames Research Center published a speculative paper about the possibility of primitive microbial life on Titan, which would be based around liquid methane rather than water. If such life existed and was consuming hydrogen the same way we do oxygen and plants carbon dioxide, they suggested that it would then, “have a measurable effect on the hydrogen mixing ratio in the troposphere [lower atmosphere],” which to all intents and purposes is what Strobel’s computer model indicates. However, in a statement written by McKay in response to these findings (here) he points out that life is the least likely possibility, while Mark Allen, the Principal Investigator of the Titan team at NASA’s Astrobiology Institute, also remains skeptical.

“Scientific conservatism suggests that a biological explanation should be the last choice after all non-biological explanations are addressed,” he says. “It is more likely that a chemical process, without biology, can explain these results.”

However, a second report published in the Journal of Geophysical Research by Dr Roger Clark of the US Geological Survey provides further tantalising and yet inconclusive clues that something strange is happening on Titan. Using data from Cassini’s Visual and Infrared Mapping Spectrometer, Clark reports the absence of the hydrocarbon molecule acetylene on the surface, backing up the non-discovery of the substance by the Huygens landing craft in 2005. According to McKay, acetylene is another compound that would be consumed for chemical energy by Titan lifeforms (which he calls methanogens because of their dependence on liquid methane). However, Mark Allen points out that cosmic rays arriving from space could transform acetylene in the atmosphere into more complex organic molecules, thus hiding its existence.

Ethane is another hydrocarbon molecule that has been long-known to be unusually depleted on Titan’s surface. “The evidence for less ethane and less acetylene than expected seems clear an incontrovertible,” writes McKay. The question of whether chemical or biological processes are to blame is still an open one, but without further evidence it would seem that the safe money is going on the non-biological explanation. One thing is for sure: even after all that we have discovered in six years of fly-bys by the Cassini spacecraft, Titan is still proving to be a moon of mystery.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.