Astronomy Now Home
Home Magazine Resources Store

On Sale Now!

The October 2014 issue of Astronomy Now is on sale! Order direct from our store (free 1st class post & to UK addresses). Astronomy Now is the only astronomy magazine specially designed to be read on tablets and phones. Download the app from Google Play Store or the Apple App Store.

Top Stories

Earthshine used to test life detection method
...By imagining the Earth as an exoplanet, scientists observing our planet's reflected light on the Moon with ESO's Very Large Telescope have demonstrated a way to detect life on other worlds...

Solid buckyballs discovered in space
...Astronomers using NASA’s Spitzer Space Telescope have detected a particular type of molecule, given the nickname “buckyball”, in a solid form for the first time...

Steamy water-world gets the Hubble treatment
...Hubble Space Telescope observations of a 7 Earth-mass planet find an unusual water-rich world swathed in a thick, steamy atmosphere...

The five-minute
white dwarf waltz

Posted: 10 March 2010

Bookmark and Share

Utilising the resolving power of the ten-metre Keck telescope in Hawaii, astronomers from the University of Warwick and Radboud University in the Netherlands have confirmed the existence of a double white dwarf system where the two stars orbit one another every 5.4 minutes.

The two white dwarfs are in a death grip and are destined to merge. Image: GSFC/D.Berry.

This dizzying orbital rate is incrementally decreasing as the two white dwarfs – the left over cores of Sun-like stars that have expended their nuclear fuel and ceased to be – are spiralling gradually into each other. Already, a bridge of gas has extended from one to another, transferring gas. We often see this accretion occurring in systems involving one white dwarf and a normal Sun-like companion, but double white dwarfs are much rarer.

“We now have close to two dozen systems where mass exchange occurs between the two stars, with periods ranging from the record 5.4 minutes up to about one hour for the wider systems,“ Warwick’s Dr Danny Steeghs tells Astronomy Now. The star system, known as HM Cancri, was discovered eleven years ago by the Rosat satellite, which detected an X-ray pulse every 5.4 minutes. What was causing the pulse was at the time unclear – we now know it is the accretion of the gas onto one of the white dwarfs – and nobody was willing to believe that it could be an extremely tight pair of white dwarfs (they are less than 100,000 kilometres apart) without concrete proof.

Movie showing the waltzing white dwarfs, and their eventual dramatic merging event. Credit: GSFC/D.Berry.

Steeghs, along with fellow Warwick colleague Professor Tom Marsh and Professor Paul Groot and Dr Gijs Nelemans of Radboud University, now have that proof. They measured the radial velocity ‘wobble’ of HM Cancri, in much the same way that astronomers discover exoplanets through the Doppler Effect as their host stars wobble towards and away from us.

Aside from the ‘gosh-wow’ factor of the incredibly rapid rotation rate and proximity of the two white dwarfs, the discovery has wider implications for Type Ia supernovae and the expansion of the Universe. In February, a pair of astronomers at the Max Planck Institute in Germany announced that they had used the Chandra X-ray Observatory to determine that the majority of Type Ia supernovae are caused by two white dwarfs merging (see our report here). Although the white dwarfs of HM Cancri do not possess enough mass between them to explode as a supernova when they merge, the study of their orbits and behaviour will help astronomers better understand white dwarf mergers. Because Type Ia supernovae are crucial ‘standard candles’ for measuring astronomical distances, understanding their behaviour is important for measuring the expansion of the Universe and the strength of the mysterious dark energy, which is causing the expansion to accelerate.

“One reason [to investigate binary white dwarfs] is to establish whether one can produce sufficient Type Ia explosions via this route,” says Steeghs. “Other reasons include the expected gravitational wave signals from the large population of double white dwarfs that are expected to be present within the Milky Way Galaxy.” Steeghs estimates that there could be a few hundred million double white dwarf systems in the Milky Way alone. HM Cancri is the most extreme binary star system yet found, but the chances are that it is not alone.

The Planets
From tiny Mercury to distant Neptune and Pluto, The Planets profiles each of the Solar System's members in depth, featuring the latest imagery from space missions. The tallest mountains, the deepest canyons, the strongest winds, raging atmospheric storms, terrain studded with craters and vast worlds of ice are just some of the sights you'll see on this 100-page tour of the planets.

Hubble Reborn
Hubble Reborn takes the reader on a journey through the Universe with spectacular full-colour pictures of galaxies, nebulae, planets and stars as seen through Hubble's eyes, along the way telling the dramatic story of the space telescope, including interviews with key scientists and astronauts.

3D Universe
Witness the most awesome sights of the Universe as they were meant to be seen in this 100-page extravaganza of planets, galaxies and star-scapes, all in 3D!


© 2014 Pole Star Publications Ltd.